
AD Al4f 993 'A FLOATING POINT PROCESSOR FOR INTEL 8080A
MICROPROCESSOR SYSTEMS(U) RUTHERFORD AND APPLETON LABS
CRILON (ENGLAND) RBAIRSOWET AL MAR82 RL-82-020

UNCEASSIFIED F0G9/2

1.0___ V- 1jj28? J12.5fljfl 11.0 12.0

liii jjj1.8
1111.25 1 1111 1 _6

MICROCOPY RESCLUIJON TEST CH1ART
'W 1' 1, .N .

AW N, DIDCOT, OXON, OX1l O,

RL-82-020

A Floating Point Processor for
INTEL 8080A Microprocessor Systems

R Bairstow, J Barlow, M Jires and M Waters.

V1U

i'-M arh18
OTRL

ELECTFIEJU 2 18

84 06 -1'0'1

A FLOATING POINT PROCESSOR FCR INTEL 3C20A

MICRO PROCESSOR SYSTEMIS

R. Bairstow, J. Barlow, M. Jires*, M. Waters

Summary

An A.M.D. 9511 Floating Point Processor () has been interfaced to the

Rutherford Laboratory Bubble Chamber Group's micro computers (2). These

com.uters are based on the INTEL 8080A micro processor. The interface uses

a memory mapped I/O technique to ensure rapid transfer of arguments between

processors. The A.M.D. 9511 acts as a slave processor to the INTEL 8080A

system. The 8080 processor is held in 'WAIT' status until compietion of the

A.M.D. oneration.

A software Macro Processor has been written to effectively extend the basic

INTEL 2080A instruction set to include the full range of A.M.D. 9511

instructions. \

I
i'
1 Visitor frcm the Faculty of Mathematics and Fhysics, Charles Universitv,

lPRAGUE.

CONTENTS

?a~e

i. Introduction

2. Interfacing the xM 9511 to an INTEL 8080A system 7

.1 The Hardware Interface

. The Software Interface 5

3. The M9511 Macro Language 9

3.1 Basic Definitions and Comments

3.2 The Mainstream Data Set 10

3.3 The Input Data Set !0

3.3.1 Description of the Structure 10

3.3.2 M9511 Syntax Definition 11

3.3.3 M9511 Semantics i3

3.' The Output File

3.4.1 Description of Structure 14

3.4.2 Syntax of M9511 Expansion 15

3.3 The ?rint File 15

3.5.1 Description of Structure 15

*3.5.2 Errors and Warnings 16

3.5.3 AM 9511 Stack Simulation 16

4. The M9511 Macro Processor - Translator 13

4.1 Basic Structure '8

4.2 Coding Method is

5. Conclusion 19

Appendix ! INTEL 8080A - Partial Syntax Definitions 20

Appendix II M9511 Macro instruction Set 21

Appendix IM- Code Generators 24

-3-

Appendix IV Examp 1e s .29

Appendix 7 Using the 119511 Macro Processor on a VAX 11/780 host 37
computer

Accessionl For

VTIS GRA&I
DTIC TAB
Uin-i-,,ounced E

Ttif4 cft ion

v ,4- bility Codes
Avail and/or

l~i-,t Special

dpk

1. TNTRODUCTION

At the present time, the largest sector of the micro computer market is

that covered by the 8 bit micro-processors of which INTEL 8080A/8085/SC48,

MOTOROLA 6800 and FAIRCHILD F8 are well known examples. These micro-

processors have found wide acceptance for many control and data handling

tasks and indeed provide highly satisfactory solutions to many problems.

They are particularly suited to many ccmmunication problems that are S bit

orientated. However, their 8 bit architecture is somewhat of a limiting

factor in applications involving numerical computation. Such computations

requiring only single (16 bit) or perhaps even double (32 bit) precision

integer or fixed point arithmetic can be handled without too much difficult"

by software methods. These methods are slow to execute. More complex

calculations, particularly those usually encountered in a scientific

environment require the use of floating point arithmetic with 32 bit wide

words. This can also be implemented via software but is very slow and

inefficient. it is far preferable to provide such facilities via special

high speed hardware.

This hardware now exists in the form of a single L.S.I. component; the

AM 9511 produced by ADVANCED MICRO DEVICES (1). This device provides the

basic arithmetic operations of Add, Subtract, Multiply and Divide in Fixed

Point single and double precision (16/32 bit) and Floating Point single

precision (32 bit) formats. It also provides a set of derived functions

based on 32 bit floating point format, namely:-

(i) Trigonometric and inverse trigonomentric functions.

(ii) Square roots.

(iii) Logarithms (common, nature!).

(iv) Exponentiation (ex, yX).

(v) Conversions from fixed point to floating point and vice versa.

(vi) Data Manipulation Instructions.

It has a general purpose bi-directional 8 bit data bus allowing simple

interfacing to 8 bit micro-processor systems.

The overall system architecture of a micro-computer employing this device

can be considered as that of a distributed system using two asynchronous

CPU's operating in parallel. One CPU handles the basic 8 bit orientated

problems such as computer/memory organisation, communication (I/O) etc.,

whilst the other is dedicated to handling the arithmetic operations.

This architecture makes very efficient usage cf the basic component

resources. In many micro-computer applications, 32 bit floating point

operations are required relatively infrequently. It is therefore

uneconomic to have to provide full 16/32 bit architecture with its

associated wide address and data paths; far better to use an eccncmical

8 bit architecture with a special purpose processor to handle the arithmeic

requirements.

The speed with which the arithmetic operations are executed in a dual

processor system is limited by:-

(i) The basic speed of the arithmetic processor.

(ii) The number and speed with which the basic arguments can be passed to

the arithmetic processor.

The AM 9511 is currently available with a choice of two basic clock speeds,

2 and 4 M.Hz. The execution time for a floating point multiply operation

with the 4 M.Hz. device is quoted as 40 gsecs. The speed with which

arguments can be passed to the device depends upon the basic speed of the

host micro-processor, its memory cycle time and the level of sophistication

of its interface to the arithmetic processor. With the AM 9511, the

arguments must be transferred in a byte-serial manner. As an example, a

32 bit floating point operation with two input and one output arguments

requires the transfer of at least 9 bytes to the device and 4 bytes from

the device. With an IN=L 8080A based host using a 2 M.Hz. clock and

conventional programmed I/O, these transfer times are of the order 170 jsecs.

The transfer time is small compared to the time taken by the AM 9511 to

evaluate a trigonometric function, (, 2 msec) but long compared to the time

taken to perform a single precision floating point add operation (28 -

175 isec).

The full instruction set of the AM 9511 comprises 41 instructions, 32 of

which operate on full 32 bit word length variables. This instruction set

together with execution times in terms of basic clock cycles can be found

in Reference 1.

2. INTERFACING THE A\ 9511 TO kN TNTEL 8080A SYSTEM

2.1 The Hardware Interface

The simplest way to interface the AM 9511 device to an 8080 system J

is to treat the device as a peripheral 1/0 component. Conventional

programned I/0 can then be used to output arguments, a byte at a clma,

to the AM 9511. These arguments are input by the AM 9511 and stored

on its internal stack. This stack can be e-ither 16 bits wide and

8 levels deep or 32 bits wide and 4 levels deep. Its organisaion

is illustrated in Figure 1. The entry of each new byte to the stack

causes the stack to shift, the previously entered byte being pushed

down and the new byte remaining on top of the stack. Single

precision integer (16 bit) arguments require two entries to the stack.

Double precision integer or real (32 bit) arguments require four

entries to the stack.

A command instruction is output to the AM 9511 to initiate the required

cperation. The AM 9511 has a 'PAUSE' output line which it uses as a

busy indicator. This can be used to hold the 8080 CPU in a 'WAIT'

state until the AM 9511 is ready with the result of its operation. This

result is available on the top of the stack and can be read by the 8030

system by a series of normal I/O read instructions. Special ccmmands

enable the stack to be manipulated independently of any arithmetic

operation. Memory mapped I/O techniques can be used rather than

conventicnal I/0. With memory mapping, the AM- 9511 interface can be

considered as analogous to a slow memory.

This simple interface is easy to implement at the hardware level but

has the disadvantage that the host CPU is inactive fcr the duration of

the required operation. This could be for a time of the order of

milli-seconds for some operations. For some time-critical environments,

this dead time may be unacceptable. In such cases it is better to

ignore the 'PAUSE' line and to use an alternative signal (END) issued

by the AM 9511 device on completion of its operation as an interrupt

to the host CPU. The interfacing is slightly more complicated, requiring

the use of an interrupt controller, but has the advantage that the host

CPU can service other tasks whilst the AM 9511 device is busy. There

is a slight penalty in effective e:tecution time with this method due to

the overheads of context switching on receipt of the interrupt.

.- notner in:race netzSoc :cr hiner :erfer-ance s-ps em3 is :z s

a irec z MIemor-7 Access :n:r: r A si--rIe MA sys:Em pr'.des

only a very slighc decrease in :ransfer :i-e fcr :he ar~uments and
.nless care is :aken can c:uai2.' ; orsen :ae transfer -- e. Th. a

is due to tne overheads in DMA systems of the need to pass the address

and number of bytes for :ransfer :o the -MA conroller. 'Iere cn.-.7 a

small nunber of bytes have to he :ransferred, This overhead can 'e

siognifizan. The method can be useful in sizuations where many

.ntermediate results have !o 'e st -ed ano a very high speed buffer cr

cache memo7 is used.

Figure 2 shows a block diagr-m of a simple prcgra=ed or =m=r7 marped

'/0 interface.

2 The Soft-ware interface

-.-e function-. of the soft-ware inacerface is to ;.solace the ;rogr-m"er

from the hardware. it cugbt not :o be necessary, for the poue

to have to know details o4- either A.M 9511 device or hardware inzerf-ace.

---e soft-ware interface can be provided by an extensicn of the host

micro-ccmputer instruction set in the form of addicicnal macro

instructions. Assemblers runnina en local micro-comucer develcoment

systems can be modified to provide the necessary macro instruction

translation. However, a more powerful and flexible approach is to use

a Macro Processor ritten in a high level language and running as a

cross product on a large host computer. This Yacro Processor can rzn

as a pre-stev to a conventional zross assembler or can produce an

output file of standard micro-computer instructions for use "with local

assemblers. The Macro Processor should be modifiable to handle

different host nicro-computers and different hard-;are interfacing

techniques.

I

5. .-. M9511 MAkCRC LANTGUAGE

3asic Definitions and Comments

The syntax of all data sets and hardware files is described acczr:in:

to 3IN (Backus Normal For-) production rules
(3) The hardware

representations of all data sets (<M 9511 data set>) are zailed i

files.

Su-re7 of all data sets (Software):

<A 9511 data set> ::- <mainstream data set>/<print data set>

<mainstrea= data set> ::= <input data set>/<outour data se:>

<input data set> ::= <input data sec><input lcgical reccrd>i

<input.logical record>

<output data set>: :<output data set><output logical record>/

<output logical rzacrd>

Survey of all corresnonding files (iardware):

<input fi:le> ::= <file>

<output fie :: <file>

<-r0nt file> ::w <fie>

<file> :< <row of closed physical records> <EOF>

<EOF> means "end of file" or equivalent

<row of closed ihysical records> ::- <row of closed physical records>

<closed physical record>

<closed phy7sical record>

<closed physical record> :: <physical rezord> <IRG>

<IRG> means "inter-record gap" or equivalent (new line, new =rd',

Each <physical record> is a hardware representation of eacti-i :ne

<input logical record> or <output logical record>

The input file consists of card images. The input text zcntains

3080 instructions, macroinstructions and cc=entz. All input cards

are printed on the printer (print file) together with error or

warning messages and description of the content and status cf the

M 9511 stack. The output file can be realised on any medi4, that oan

hold sequential data sets and consists of 3080 assembler instnctions

in card image format (fig. 3).

-iC-

3.2 i .'ainstream data set

. he 080 assembler instru:icrs differ fret- :ne inszructions 0: -_he

All 9511 --itten in macro language M 9511) by :he name of :he

instruction (mnemonics) and by the defini:izn of zhe parameter

subfields.

The general pattern of the statement of both kinds of instruz-tions

.s as follows:-

{,)<oaramerer field> FFw];<cot~ent>11
Lj'-<ins truction> 'I

I[];<comme-it>

- l <seauence no".)

F I<parameter field> F,]<omn>

Qo; <eoeent>

-where [1neans a or b or nzothin:g

bja means a or b

[,,] means nothing or one (or more) blank

4' -1means one (or more) blank

<a> means "a"

3.3 The Innut data set

3.3.1 DescriDtion of the structure

The input data set consists of 8080 assembler language instruc:-ions,

8080 assembler language macro instructions (if any), M 9511 macro

instructions and comments (if any).

The M 9511 Macro instructions Ao not differ s-,-ntacticall from

normal 8080A instructions. The only difference lies in the name of

the instruction operation and in the meaning of the parameters. Names

hat are defined for the M 9511 Macro instruction set must be reserved

exr1.usively for this set and cannot be duplicated for norm=al 8080A

macros.

-511 Macro --torin an ~ cinaloel:

ootonal~;foLlow the parameter fields or in:-:stcticn -atme

absence of jarameter:el.

3.3.2. M 9511 Syntaxdeizo:

The Syntax of input logical records as described. SvLI r. "- "'"'

rules is as L-Ollovs:-

<inniut loical record>::= <logical record 3O5O>:<lCgical record >

< 1o s,.c a 1 record 8080>::= <Statement SGSC><sequence number fielc> 0
<logical record M>::= <statement M><seauence number ec

<sequence number field>3: := <bclankety><seqjence numnrer>

<seq. of blanks>

<seq. of blanks>::= <seq. of blanKs><blank> <blank_>

<sequence number>: := <sequenice number><digit>'<digi.-:>

<blank>::=~

<1blanket:;,>:: = <seq. of blanks>Ie- t,,>

<empty>:

<statement 8050> See appendix I

The definiti'on ef M 9511 macrclanguage now~ follows:-

<:nsruczon ield >::= <sea. of47 rk>:sra:on<eea a'ee

field>

<label>::= <l.abel><letter>c<labe"><dioit>l <letter>

Only th~e tlir3: five characters in the label aze san.ican!-.

<general parameter field>:: <sea, of 'oank7><-parameter fe<c~

feld>!<ccr~ent field>

<cc~enI, field>::= <seq. of olarnks>!<blanket-,;<cct-i-ent-

<Parameter field>::= <parametar>!<parameter ufedracr

<parameter subfield>: := eparameter> !<empty>

<narameter,::= <shfllt>*<register pair>I<variable>,

3/3

c:co anr-: -an zha* .:,=et-n a>

Ares tric::4. is that the singa :e tters S, 3, D, H c:annot *-e

uised as l~abels since tn ese are -;e-:zed as rsse ar n hfs

.3. Cc~enz on 3',,1 iroduction r-ales:

Th-e length of tne character szrings produced by prduction.

r-ales c-r :he -%=rbe= of recursive repetitions is descri-bed

by these -zales:

< > = eans :he =inimaal 14 anid maxinma. M :atigth of to e s z:7:1,g

<>:, means that -:'he langth --- to :e string is maadara:-

> means the minimal n'j=ber "I and maxi~mal 7ambez M orZ

recurrive rCepet-tions of the production rule

instruction set

<parameter> represents a Oirect Address or :-.direct Address and,' r

an AM 9511 Stack Operation

a) N nstructions

A full descr:: t:on. of %1 9511 Macr'o :nstrictions i s pr--v-ied irn
AP~endix II.- To a large eXtent the same mn~ncs as are used
in Refference I. are repeated in the Macro jnstrzuction set..Th
fo2.iowing 7ist of instr-zct:4ons hovever diffe-

M951i2 U! 9511. (Origina. Set)

NOPY C

7h.e NOPM i-str-uCtion is so named as to distinguish izt frcm t: e D-T--
3080 in.st u:'Ction NOp. T'he remaining NO? () inS -ci~ r sst

rea/wrte:armetrsInto/out of the -kl'I 951. -star--, wnizhout perfc--jnz
any operation. The OS-r. instruzction is used to read Che AMi 9511 device
Status informationI (see Ref. 1). T-his irsrcinafcst- 38
condition bits accordingi-7. SIsr-ti- fet n

b) Parameters

Apart fro:m the S parametpr :hat 'will be described late:., the ;resence
of a :armecer in the parameter -iSt --=plies zhe raig~r~~o

A

- - - - - - - - - -- - --- .4 , ,5 tack. .'e -.umOeC f ''--a "- -
:1 e s-" k ,cs uocn :ae .src.i..r. cee A5 e : .

..rst twJo :)aramezers ze-fe: z: the serndi-,- of .nf crma zio'n :c :e S :

an -he hird par aze t er re:ers co reaading in=a t r r. 2= :he stac.z.

--he ararneters can be specified in -ur different was:-

<emnty> m.eans that :he "parameter 4s no: .used and an,,
ooeration re.evant to this oarazecar .s 7:c-
performed. '

2. <variable> means the 'direct address' of :he value tha: is

to be sent:'read from the cop of he stack.

3. -register pair> neans the register pair containing the a"rass

of the value that is to be sentread frcm the

tcp of the stack.

4. <shift> -T1e meaning depends upon :he ocs-.:cn in the

parameter list.

a) For the first two positions, :n-e stack is

shifted dcwn, the TOS (zop 3f stack) being

ccoied to the NOS (next to :cop cf szack;.

-he bottom of :he stack is lost.

b) For -he third :oi:icn, the atack -s hf:d

up in ciraular ma.ner (i.e. rotated).

For both cases a) and b) the numoer f S if: : s
determined by tie insc-t-ccicn ('See Appendix

. The Output File

3.4.1 DescriDtion of Structure

7-Te stvacture of the <output data set- is -he same is tnat or -he

<input data set> except that each <Iogical record X> fron tze t:inu:

data set> is expanded by the M 9511 Macro processor into <1c2ical record

M ex randed> of the <output data set>. This <logical record M ex-pandec>

consists of tntel 8SCO assembler instr--ctions on.

Th,-e original <.ogical record '> is added as 1 comment to the -:uz

data set> before the expansion is perdormed. A ccmenc rctainn

blanks is added to :he end of t-he <cu:o;)u data set> after -ne *::ansi,'

j The expansicn is described in Appendi"

3.4.2 5%-nax of -0 511 zxoansioc I

<Iogical record M excpanded>::- <cc~en: heaa oCgia. alo

<,:Ov of lcgizal records SC'80>

<,cc~en! ::ail .,c. r~c- -d

ov :f lgical. :eczrd-;s 3CSO> :<raw of logi cal records 3C32C>

<Icgcalrecord 3080>

<:.ogical record 380>4

<.zo~en: head roia ec=r&:: <:x-er. headf>< secu-ence n=;zder field>

<ccmment tai)g:cal r-acord>::- <zoent :ai.:'<sacuenas number field>

<comment *lieadi> 7Z ;Ljs.<statement: M 1%>

<statenent M>is the cr'mcazed lcs:taent ",> :rcrn t:.e r-:-

c-.haracter.

<cc~e:i:_ tail> U;<sec. :r ..;ban~cs>

3 .5 The Print File

3 . 5. i esc-~zot4 on ofI. S ror--ar a

The <rimt data set> =osists cof a listinr of- each f~oo:c r=m

the <input data set>. For M! 9511 Macro thc:osoe ccntents-I

the AIM 9511. stack are sim'ulated and printed fcr each sten the

instructions execution. 74arning and er-ror mesaes are added as

.Acessar7. ach instruction in te lIsting is umbered.I

The print file is usuall7 printed on the s'zsom r.nr.Tereco.ra s

i~n the file, are irouixoed i4=o numbered -za~es.

a) Th e Syntax

<print dar t :: <f,*ile heading><nrint data set Mfl n~:

<print dc. M:: <print data set M><orinted 2age> ':r;_itec Tac

<printad -ew -age action><;age headir g<crinzed c age K

1<printed p~> :<printed page Ml><rinted linell <O inl:e-o

<printed linie>::- <nev line acti-on><pr.izc record>
130

<print record> :u<c rint record><an, cihar <ar-v:,7 '

b) The Semantic

The <file heading> corsist3 of a title anc :a

.he <file ending> is a s-ar .- s r nuzzers :: nout,

1u. uc, Trinc records and various error essades and warninos.

The <page heading> is a page number

T:he <new page ac:ion> and <new line action> are appropriace c:-icns

taken by hazdware c3 display new :age or new Line.

The <print record> consists of five :-qrps om essages:

1. All input logical records are listed step by step, a2wa'7s

preceeded by the print record number

2. Error messages see 3.5.2

3. Error warnings see 3.3.2

After each '4 9511 Macro instruction, the status of :he AZ 9511

incernal stack is described (four lines) together with wa-nings

concerning any meaningless informaticn on the stack. 'T his

check is only formal) see 3.5.3.

o. Blank i'es

3.5.2 Error and Warnings

There are 15 possible erroer/warning messages. Error =essages are

issued wherever an error occurs during card input and sy,.an checkin;

(label and zarameter fields).

Warning messages are concerned mainl 7 with Possible inconsistencies

in the state of the AM 9511 interna stack.

Checks and appropriate error messages are also issued concerning

error conditions arising through ?ossible but hopefully very rare

errors in the basic programe lcgic.

The number of error/warning ccnditions arising during the macro-

processors coeracion i counted and a summery printed at the end of

the run. Each error condition has attributed to it an appropriate

severtyt code. The highest severity code arising during the run

is issued as an :BM 260 completion code for the 360 Job step.

3.5.3 AM 9511 Stack Si-ulaticn

1: is not obligatory that the results of macro instruction execution

be returned to the external memory,. In:ermediate results can be left

4n the .M 9511 internal stack ready for use with a subsequent

instruction. Th-is technique can be used for program opt.=isaticn in

situations where speed of execution is critical. However, with this

-7-

teachnique is iessen:ial cha the e cn:n :e sec-e

k- a -- ! 3te -f . .ectin -z Ccnsecuciz:.-e inscr-lcziCns.

Si nce certain instru~ctionS operate on singie precision wor4 e~h

,.6 bits) whilst others operate on double precision word lengths

(32 bits) and since sone instructions cause =ovements rf :he stack,

it can become very difficul: to be certain as to :he zcntent of

the stack at arny given stage.

Therefore, for ease of verification and as an aid to omti:satjcn

the stack behaviour is simulated by the macro processor. 7he

results of the simulation are displayed as four lines in the print

file and appear after the macro inst-ructon itself.

The first line shows the contents of the stack after the in;ut of

first parameter, the second line the contents after input : he

second parameter, :he third line the contents after execution cf thte

macro inst ruction and the fourth line the contents after output of the

third parameter.

The format of each line starts -with the work STAGC and is foil-wed

by four fields separated by 'dot' characters. Each field represents -

one dcuble word (32 bits) of information on the stack with the 'Top

of Stack' to the left. The name appearing in each field is either

a parameter name or the name of an instruction, i--plying the resu.:

following the execution of the inszt-cticn. For double precisicn

parameters, the field is left extended with "c' characters. For

single precision parameters, two such parameters occupy one field.

A totally blank field or half field in the cas.e of single precision

characters implies an undefined stack content.

Warn-ing messages concerning possible inconsistencies are issued as

necessary between lines.

-. 3asic St:;ctura

.7he translator is ccmosed -f :hree main part-: s- ntactica. ana73e:,

svnzhesiser of the new structure and :ode -enerstor. The s

analyser evaluates each sza:ement step by scaD starting wi-= the laze

:ollowed by the insr'c:ior., operands and commen. in::ernal *od:cs are

3enerated and scored for each field indicaing iz3 presence or i;osence

and its t:7pe and content.

The svnthesiser uses the above codes to establish the basic structure

of calls to the code generatcrs. T'hese in turn create groups of Intel

3080 insrructions to access parameters and initiate coperaticns.

Any future change in method of interfacing the Q1 ?311 to the EC80

system can be easily accommodated by changes to :he ccde generators

and possibly synthesiser.

4.2 Coding Method

A too down structured progra=ing approach was ri-gcurcusly adhered to

at all stages in the coding of the macro processor. This approach

enabled both the coding and de-bugging stages to be completed quickly

With a miniamu oZ errors being encountered during the work and

afterwards when in produc:ion. The final prograre is also easy-.:

understand and can be modified ;f necessar 7 wi:h relatiie ease.

The processor was coded in Fortran which althouah not being ideal for

structured programming methods is nevertheless widely used and understocd

by the user community for whose use the prograrme was criginally intended.

Special sequences of coment statements and 'GO TO' instructions were

created to simulate the required structures i.e. SEQL2NCZ, ,

.ii-Tq-ELSE, WH"E-DO. tEEAT-UI, LCoP-E TI -EflLOOP, SMEICT-CASE.

Each prcgrame module was divzided into three tarts, declaration, main

text and formats. The prograe was ex:ensively commented which

considerably assists its legibility.

it is intendad that :he macro processor be used as the :irst sten of

a tvwo step job, the second step being a conventional assembler. Ste

Number I (?re-Processor) produces a file zcntaining conventicnai S080

assembler instructions which are then used as inouc t3 Ste Nuber "

(assembler.).

-- -

5. Conclusion

The system as described in the previous sections is operational and in

use by the Rutherford Appleton Laboratory Bubble Chamber Group in

connection with its micro-comnuter based film digitising table system.

T7he cross macro-assembler vans on the Group's VAX 11/780 computer, :.he finai

object code being loaded into a selecr'ed micro-computer via a loca. 4

communication network.

Some examples illustrating the usage of the macro-assembler and the

macro expansions produced are given in Appendix !V.

IPPENDjI T

The Partial description of svntax of 3Q80 assembler statements as deszribed

by 3N production rules is as fol)lows:-

--statement 3080> <:= <nstrcc~m field>'< a e > < n c~ o j l > < ~ e

<.-rstruction 3080 field>

<Lntrcm feld>::= <b larnkety>; -comment>'. ins zruei ~on 308fl field>

<instruction 8030 field>::= '-seq. of blanks><instruction 8080><generai 808"-

parameter field>

<instruction S080>:: <iz-scructic-zn 8080-<letter>'r<lecttr>

<general 8080 parameter field>:-= <:seq. of bla-nks><8080 parazierer lield>:

':banket-,-; -cotmr.ent> -src. of blanrks>

<8060 parameter field>::= <8080 parameter subfield>!<SC80 oarameter subfieLi>,,

<8080 narameter field>

<8080 parameter subfiel> fcr definiiti4on see C43.

4J 0 m J

C-1 cnc *

U~z -

14 T4 .4

ra.4.

jj

, *

z I i

I- -

t-

Thiese are :he se:s ;s :-:ir ,- r ez

'A ?511 Malcra sri:os

For all. cases:
S TAC', ECU ,F-..n- 'Hard-ware Desendenz)

0 N TR 7QU -=1? -I--arae :e~endzn:),

Code Section A (Sendi-g in-formaticr, to the o-: D-stack)

A!) ?arameter i.s a label C(i.a. Direc: Address)

LDAM 3 -~ CP "
S:A -TAC

LD)A ~ C? Doubl.e

STA STAM7(-2recision

TDA + OP and

STA S :A CX Tloatizg

LDA 0 + 0-2 orec4 Sion

STA ST :

OP is replaced by actuial . .bel Name.

Sequence takes 10'" Clcck Cycles (Do)uble -2)

;' Clock Cycles (Singe P

?2 arameter is a Reisr Par (C E

N B3or D

3 or D

3 or D

LDAC 3or D {For sin*gle
SASTACX, I recisi'on onl Dcb

DCx Bor D I?~ii.

LDAX 3 o-6D Iand
STA STACK .1 ~:a t

DICX B3or D

LDAX B3or D

STA STAC7X

Seuecetakes 1- lc Cycles (Double ?)

nou~rumber of :cde:

7 --oe -n >ouc ?arazear*

- '.x~um Nbrof Paramneters aceci

3 v~ of Cu~~?arame:iar

- -a:ird ?aranmecar Alie'.ied

:rna cf zode:

S Si ongle Precision in-eger ltIS bit)

D -DcubIe ?r:Scision rnceaer (22 bit)

- :- Flat-ig Point (3bts)'

- es

INX I
:;X -

SA, -

STA 'ST.C For single
npreoision only

DCX H D,-ub le
MO'. A.. m rcso

STA STACK) and

DCX H

MCV A, Mf

STA STACK

DCX H

MOV A, m

STA " STAC

Sequence takes 110 --c C.cles (ouble F)

50 Clock C-icles (Single P)

_'2 ?arameter .3

Single ?7ecision:- z'I A , 7,H

STA CONTR

Doub> P recis o:- .V- A , 37H

STA CC T

Floating:- A 17H

STA Cr r

In all cases Scquent_ :aas ZO Clock Cycles

Code Section B (letrieving information from TOS)

BI) Parameter is a Label (i.e. Direct Address)

LDA STACK

STA 0For single

LDA STACK precision onl 7 Double

STA I + OP Precision

LDA STACK and

STA 2 + OP Floating

LDA STACK

STA 3 + OP

Sequence takes 104 Clock Cycles fcr Double P
_ 4#to

3 r D

3 az

".C.:3 3r D

DCN 3 z- D-

S~~pience :ak.as ilU Clock C:!zles zc:,r 3uL

It. P az-anaer - s I- Regi -iter P air u

"DA S-AC-

It A 5 TAC -

M., A

IDA~ STACK

MA

M, L

C cN:2T

D Cub 2 ?r 2 is-,I: - MYA, 2:31".

A, ISH

STA C CN__R

all zases Seauernce takas 2C C-Lock Cclas

Code Section C (Sending istr-octiom into AM- 95112

A CCNTR

2:TSR -r 3irnar7 Code of AZ 951-2. ist=ruc:ion as de::z~ed

Cc-=and Su a7 (Ref. 2-)

Secuence takes :0 Clck. C-7cles :o send 1=st-zuc:-_cn to AM 9511

N1.3. Amber of Clock Cycles required for U!4 9511 to execuoza '--;en 'sc:

can be -fcund .i IRef. I.

Code Secion D (Reading A-M 9511 De,,riae Status)

IDA C C N7,7

-C 3-4

:M-,r40H

OCCT

*I RALI

IMI
RAL

zo quenc± ac at least: 11 Clock Cycles. Y orc - 1.2rc

JV c s bjus': when reque~st is made.

±nso ut oeCL)rreSnon&c 5 te : nstruc n -r -

~r~macaus Reg istrer s tr an sferr eu -o Bi ts 0)-4) S ,7:u <

aSn Zr and Ca-r': r<) lace the correspond ingcbKA:os

.FC :j~t la S no t fectred . .

'The above code sections are zisseflbeo s'gether -c'rding 4s h 5

mac-ro instruction in the following or-der:-

Cod,-e r,ovanitt to tirst naramreter (if an':) i.s selected fromL- Grout A.

2. Code relevant s-o saend s)arameter (if any, follows and- Is alszo I rec

from,- Group A.

3. CodLe for instructio n ex.-ecution follo-Iws and is uroi.. C c;~ce.

Co e relevant to third parameter (if any) fellows and is selected frw--,

G.rlun) B.

41

.?arar.er Usage

BirarF s

a) -AD - kL:, VT

A: DS ; fl at:i.z ncint number

ALI: DS .; fLoating poin: number (3.0)

"T: D$.5 -loating p.int resu'It (5.

,henever a. axterna7 address is speci ied: fr the third pararmeter -ho

result is zcoied fro= the TCS to the external address and the staik

ispopped un Circular 'the result of ceran.i-n is now on the bottom of

the stack.

b) LHLD

MCV 3, H ; Address kM in BC

X0V C, L

LHLD ALTi

Address cf AL: in DE

FADD 3, D, 3 ; Result back in -.

c) LHLD AM

MOV B. H ; Address of AM in BC

MOV C,

FADD ALl, B Result stays in the TCS

d) FADD A,, VT

FADD , A M, V-"

These instructions add floating point number expected in TOS t fl'"ati-

point number stored at AM. The results is sent t location address VT.

Both these instructions produce the same result.

e) FADD

This instruction adds floating point number exoected in TOS to flcating

point number expected in NOS. The result is sent to location address V7.

This instructin adds 2loatingz pcir ntziber expe csea in T S t Io oating_

o. int number e:.: ec:ed 'ci NOS. -he result stats in the 70S.

~FAZDA,2

This instruction first sends the oatin t oinc numberec:,-: 3s

a contenr of AN to -CS. The secona parameter ,S causes the stazk co

be pushed down whilst leaving the ori'ina TOS intact. The inszructi-c

:hen adds TCS and NOS -he result beinz -liaced first in -,S and znen sant

to VT.

The above result could be obtained in -aess efficient nanner .v:-sin2

the following ins ruction: -. AuD c-oA , VT.

.-u FADD a,, VT-

The ezpected floating point number in TCS is doubled.

FADD S, S

F ZDD , , T!-"

The ex:ected floating point number in TOS is zripied and ent to ".

This e.-ample amphasises :he incrtance of unierstanain the staok neha'i'Jr.

2. Unry Functions

S IN AM,, "T

sinus 0 A211 is sent to VT

nu.t S IN AM, AL, VT

is flagged as an error 009 and parameter AL is not used and sinus

of MN is sent to VT

SIZN ,, VT

sinus of 70S is sent to VT

S IN

sinus Cf U.S replcCes TOS

-31-

2. tu.ions :hat do not require any input -aram&ers

?UP1 , VT

7 is sent t VT1

PUP ISis in TOS

LP T ,, S I
i is in bottom of the stack

Part Program Examnle

Given a triangular coordinate system with f::xed base length b.

To convert tD Cartesian coordinates x, v
Y

ri r,

Triangular Cccrdinates are rI , r2 (integer 4 bytes each)

3asic Flcw Char:

A: -ranstdorm ri/rz. to Flocating Point Format

3: al = 0.0050*(rl -9216.0) - Cx C: x> 73.0

a 2 - 0.0050*(r2 -25600.0) - Cy Cy. 120.00

C: (a - a + b)/(2*a *b) b 137.15

D:x - 25.C - el*"

y = al,*

STOP

9D

X DS .Crij (irIa i
CKS1 DS9216.0

CX2: S 256C.

C2.0: DS 0.005
CB: Ds b= 137 .45(

CDVA: Ds 4 25 . ~
C-C* S -1.0)

CAI: a
CA2: OS 4,

DS 4 x Coordinate (Car:esian)
Y: S 4 V 0

Inst: No;

1. SL'..T: l.LOD C1ir

-. FSB CXI r 21 0

3.T CPAD ; .0O5c*(r 1 - 'lXj.0) I
4. --ADD C CA.

FLTD CR2
.FSUB CK2 r 2 560C.C)

FLLCPAD G.)050*(r:- Z560.

FADD CY,, CA2 ; z
9. F.ML CAI, S a,

10 YUL CA2, S

1.FMUL C3, S b;

13. ?AkDD a2~ a:

14.f-Di 77 0(a 1' a,~-~
15. 'Dill CAI a a.- n-i2.
15 -Div CB,, CE:A -

* 7.. ',0PF COVA, CONE

Pr gram Seczin (Contd.)

13. NUL CETA, S ; -

19. FSUB -

20. FM.xJ CAl a-*y

2. LSU3 ,, C Y
2.FMUJL CETA, Cl

I.

.I.

3~zk -a:;~ *'f ,r -lar: ?-f

x- :: CR1

'7 ACK: x.:T F FL

STACK: :cxxx CKD xx L

STACK: cc-cc F3L x=TB LT

STACK: -.=cxx F 7, JB

STACK: :ntc' CPAF~D --x: SUB

STACY,: =cx: C2 AD ::,:cF

STACK: : 7-xx 'LL

STACK: rmn~:F!L
STACK: CX cc ?L

STACK: .~ CX :cxx:ct FML

STACK: xmccxx 7ADD

S T ACK: A

5. STACK: I :~~CR2

S-.A CK: x xC2

STACK: : 'cc F LTD

STACK: 'Fl~ FT D

STLACK: :ccxCR2 =cx FLTD

STACK: . x CK 2 Ix: FLTD

STACK: FSUB

STACK: S : LxxFSB

7. STACK: xc- CPAD -c=%x FSUjB

STACK: x-cccx CP~fl :co r sLT

STAC:': xmc FMUL

STACK: Ic'M FML

S STACK: Cxxyxx CY

STACK: I mc CXXXCY mxcFDL

STACX: CA-'rAD

STAC: CA

SSTACK: mcxxA

S ta ck7 max'C,;~nta:.

T -s

lo. So TA : :mcsA -xxxFUL

3 TA C:(Y~ CA2 xmccx CA2 Xc:

STACK: :ccxc FNLT. zcc:x -YL

STACK: :xx=:' FMUL I nx~~fMUL

11. STACK: xm: n7 -.c= 11,

STACK: xxmcc FML X:== MU

S TACK: FU

STACK: x~cnc, F SIB3

12. STACK: I:xxxx C3 :ccrxx FSUB

STACK: :tcy:zc C3 ~~ C3 I 7 5a

STACK: x:cccc PfU~.L :ccc- PSU3

STACK: xxx::.x 7EMUL -=:xx F ESUB

13. STACK: FXU F"~j Ixc SUB

STACK: FD

STACK: :xc& FADD

STACK: :ccr-a CTAlD' cccFD

STACK: -,c:cx-c C7;0 cicc ;FADD

STACK: :,Dx CTOIV xx:c'

STACK: ::x:= FDIV

S-TA CK: -c EDIV

15* STACK: -=-cx C.1. :ccc-rc: FT, 71

STACK : :=x~ CFD 7~~: D

i6 STACK: xmv~cc C DV'

STACK: i:cC3 DI

16. STACK: -c:=c CS :.:Vx D

STACK: :xcxcc C=7A:x D

17 STACK: :r-x. CDVA

STACK: xxcc=:c CCETA D

1. STACK: :ccxx CONE

STCK c:x-cc CCN x:c VA
STACK: Cc~ CONZ :c:c W

*J13. ISTACK: X"=: CETA cz:xx CONE :xvxxx CDVA

STACK: -:xxx CETA x-mcc: CZTA :=Xx CONE :c:xCDV'A

STACK: xmcc:c FM-L :.c-ccx CC'E Cx: DVA

STACK": x-mx F" tL x:c.: CO%7 x:::: CDVA

-ns,-. isSI TS ::os

S--ACK :x: YL x:x CE 1; -:x OVA

s:-ACK : xxxxx= :-%TL : CON- xxxx: CDVA

STACK : -U3 x Ccx OVA

S -- CK XX.-NS LB -cc:x C D)VA

2c . STACK: xc CA'. -c 7 ?S 7B xx :CD'VA

STACK: xx~CA! mccc: F SUB Ixx CDVA

STACK,: :zx F=~U x:c CDVA

S-1xx 7MUxCyx CDVA

:1. STAC'K: Ixcu F-U1 c:-xx CD7A

STACK: xxxx -FMUL x:cx CDVAI
STACK:SU

ST ACK: -Xxx

STACK: ::: CETA

STA CK: I :xx CAI xxx-cc CETA

STACK: IxcF=L

S7:ACK:

Aopendix

Usin2. the M9511 Macro Processor on the Pubbie Chamber 0ros,'i V<

11/730 cornuter.

INTEL 8080 source code is assembled on the Bubble Chamber Grouo
VAX 11/780 computer using a cross assembler written in ECPL code.

As this cross assembler is a CPU intensive process then access
to it is via a BATCH job running in the SY ASSEM batch queue.

This appendix describes the action of the batch job and ho v the
M9511 Macro Processor is used, along with the commands needed to 4

execute the job. .

(A) FATCH JOB.

The batch-job has seven input parameters (P to P7) whnch
control the flow of the job. They are as follows:-

Pi Input file name (If type is A.DD then P! beccmes a
concatenation file ccntaining a
list of input files)

P2 Out-put file name (4-character name of program)

P3 Default directory (directory where P1 exists)

P4 Usernme (Used by job to keep user informed
of its crogress)

PA Title (String of characters)

F6 Cross reference flag (YES/NO)

P7 M3311 flag (YES/NO)

.he fzew cf." execut~cn rcu the bazch iob s , 1ozw -

t) thnec: paraimeters

)Run pre-processor
where.

Input file name P"

Output file name WC.K:P2TDA

3 if P7 is "YES" then run M9511 Mfacro Processcr
Where,

Input file name WORK:P2.T,;n (n is
vers no

Output file name 7CORK: P2. Ta;n-i

List file name WORK:AA9e511.LIS

4) Run Cross assembler.
where,

Input f i le name WORFK ?2.?EA
Output file name GO.DAT
List file name WORK.P2.LIS

5) If Pro-ram name (P2) is "NULL" then terminate

6) Run Loader.
where,

Input file name GO DAT
Output file name Y*EXZ'' : P04" , ..P LCD

L

(P B TCH ,B EET 1 GN

the batch jab is executed by- neans ,I cne o
corrmands: -

I) ASS ,I Run cross assembler
2) ASSF? Run cross assembler with ,19511 :7ac: rcc2-'2,

Zoth cormanda ".,i1 prcmpL fcr t:he foll owing set a! oarazeter: -

F; I e name
Program name (4 chars)
Title
Cross reference (YES/NO)

T1he cnly difference between the two comands is a ":,3f r
which is passed to the batch job, i.e.:-

ASSD4 P7 - NO
ASSF? .?7 - YES

The value of P7 is autcmatically set up by the rehpectvo
commrand.

4 l b .. "-.. .I m

a-'~cr acn1- nz, nn e 2&) trv~a 7)r 7.7 3

asc tha 'r -~a-:,cr- an ne Sc:,uce- ?-s4r - uncl: j. .",.,.

I4

(3 'W 3ackus: 7he 3saxand seman:4-cs --ft*e -)rcucsEd anr~~

a!gebo:ai2 language o' the Zur'ich AC' -GA2J ccnf crec T C 2 ParisCre1:

<~) ~v~:SC3O/8CS5 As~emblv ..ar2-agze

Progr~ingManual 9-0

(I) LL

a. LU
-

"-44

(Nr0

0 U

LU C- 4~H
> co<

0
0

0 CL

0 0j
Zi.

S - " - > -"

-:,I "-- -

V -~

-J .

(A> .

k , k AAA ,I r_*

I!.

z a,

z
00

a_ 0L

LII-

0 0JL

LIn
LLLU

C'L
- 0n

LU 1-

C

ALL

